SIMD Image Processor

Eric Liskay
Andrew Northy
Neraj Kumar

ECE 590
Spring 2012

Objective

Eric Liskay

The objective of this project is to create an image processor using an
SIMD(Single Instruction Multiple Data) architecture. Each SIMD processor will be able
to perform operations on a small kernel of pixels. Every processor will perform the same
operation its data. Once the main architecture of the design is complete, we plan to add
operations as time allows.

X-Y Pixels

A - Pixel Data
900x24-bits

User
Opcode Inputs

b

24-bit Color RAW Image

900x24-bits
B - Pixel Data

Cell
Processor

¢ 900x24-bits

C Pixel Buffer C (Output)

Tile 3x3 Kernel Eric Liskay

Pixel Channels

Red

Green

Blue

8 bits

Cell Processor Controller

The top level module of the image processor can also be called the Cell
Processor Controller. It is where the pixel buffers reside and where data is sent to the
cell processors and received from them.

The imageProcessor entity has 8 ports. The first is a clock. The second is a go
signal which triggers it to start processing whenever this signal is changed. The third is
an input of an integer number which can be used by a testbench to label the output file
when processing multiple images at a time. The fourth input is an opcode which is used
to determine the operation to be done on the image and is passed onto the cell
processor. The fifth and sixth inputs are userinputA and userinputB. These allow for the
user to pass arguments/parameters along with the opcodes to affect the image. Their
usage depends on the opcode. The last input is userKernel. This allows the user to pass
a custom 3x3 kernel to the image processor to be used in convolution with the
appropriate opcode. Finally, the image processor has an output signal called complete
which indicates to the testbench when the image has been completed.

The pixel buffers are where images are stored when loaded into the image
processor. We define some of the data structures in a package at the top of the
ImagProcessor.vhd file. As shown in the figure above, each channel has 8 bits. Each
pixel consists of three channels: a red channel, a green channel, and a blue channel.
The image processor supports images in 24-bit RGB color. The exact file type that is
able to be read in are Photoshop RAW files. Pixel buffers consist of a two-dimensional
array of pixels. The size of the pixel buffer depends on the image size, which is set by
the user in the IMAGE_WIDTH and IMAGE_HEIGHT parameters. The parameters

Eric Liskay

IMAGE_A_NAME, IMAGE_B_NAME, and IMAGE_C_NAME identify the input images
and the desired name for the output image. These parameters can be passed in from
outside sources such as the testbench.

Inside the architecture of the image processor, the component Cell is defined,
passing the clock, opcode, user inputs, user kernel and three pixel arrays. There are
two input arrays, one for each image, and one output. These pixel arrays are the size of
the kernel which is currently defined as being a 3x3 pixel array. The Cell processors are
created and connected by a two-dimensional generate block. Each processor receives
the same opcode and user inputs. The number of cell processors generated is
determined by the TILE_WIDTH. A tile is shown on the figure on the previous page.
Tiling was implemented because the number of processors required if the whole image
was to be worked on at once would become prohibitively larger as image size
increased. This method allows one “tile” at a time to be processed, moving sequentially
through the image. The width of a tile is how many kernels wide that it contains. This
constant can be modified. Currently, we have it set to 10. This creates a total of 100 cell
processors. Each processor works on one kernel of 9 pixels. This means that 900 pixels
are processed in parallel per clock.

The image processor controller contains four processes. The first process is
triggered by the go signal. This process reads in the images. Currently for simulation, it
reads in these files from the drive using file_open. If either of the file names cannot be
found it will fail on an assertion and display an error. Since you may only want to
operate on a single image, it is okay to set both the images to the same name. Next, the
two images are read into the two respective pixel buffers, one channel(one byte) at a
time. Since the image processor will usually operate on color images, there are three
channels. This parameter could however be set to 1 for 8-bit grayscale images. After the
entire image is read in, the file handles are closed. A ready signal is set to high.

Upon the raising of the ready signal, image processing begins and the next two
processes are activated. The first of these processes triggers on the rising edge of the
clock. In this process kernels are sent to all the cell processors for processing. The
second of these processes places the output of the cells in the correct position in the
Pixel Buffer C. It also contains code to control the iteration of the image processor
through the tiles in the image. As it is currently coded, there is a limitation on the image
processor where input dimensions must be set to a multiple of the tile width in
pixels(currently 30). An input image of any size can be used, however the
IMAGE_WIDTH and IMAGE_HEIGHT parameters must be a multiple of 30. Smaller
values than the input image will just cause it to be cropped. Once the last tile is done
processing, a done signal is set to high.

Upon the rising of the done signal, the final process is triggered. This processes
creates the output file and writes the data of Pixel Buffer C into the file. The file is
named based on the IMAGE_C_NAME concatenated with a number and the file
extension “.raw”. Once this is complete, the complete output is toggled to let the
testbench know processing has been completed.

Andrew Northy

Cell Processor

Our design includes the image processor sending pixel arrays to 100 cell processors to
perform the work in parallel.

Defined types: Pixel
Pixel is 8 bits and has 3 channels (red, green, blue).
Pixel_array is a 3x3 array of pixels, and this size is sent to each Cell processor.

outputC

Inputs:

imfgeA takes a 3x3 pixel array from the ImageProcessor. This is the main operand used in every
opcode.

imageB takes a 3x3 pixel array from the ImageProcessor. This second image is used in
operations that are performed on two images (ADD, SUB, MULT, AND, OR, NOR, and XOR)
userInputA is an 8 bit immediate value used in operations that utilize an immediate value
userInputB used in the Darken Highlights and Brighten Shadows operations. userInputA is used
as the threshold value to compare against, and userInputB is the amount to increase/decrease the
pixel values by.

opcode defines what operation the cell processor is to perform

kernel allows a user-specified kernel to be used in conjunction with convolution mode.

Operations

The cell processor has the ability to perform a wide variety of functions. Many of these are well
known, and their hardware implementation is trivial. These types of functions include the
following:

* ADD - Addition

* SUB - Subtraction

* INV —Inversion (bit flip)

* AND - Logical AND

* OR - Logical OR

* NOR - Logical NOR

* XOR - Logical XOR

Andrew Northy

The cell processor can perform these operations between two images, an image and an
immediate value, or perform the operation on just a single color channel rather than all three.

There are other operations that warrant further explanation on the intended hardware
implementation.

MULT - Multiply

Our multiplication function has been simplified for space constriction, and results in a look-up
table. Rather than multiplying two 8 bit numbers, it takes the most-significant 4 bits of the two
operands, resulting in an 8 bit output rather than 16 bit output.

imageA(7/-4)

imageA MULT
"4 opcode 0A OUt’fot
8 8

imageB imageB(7-4) 1Lg§:<gp table
8 256 bits

Due to the operation being on 4 bit inputs, a look-up table to calculate the operation makes the
most sense in terms of space and speed.

imageA(7-4)
imageB(7-4) 0000 0001 0010 1111
0000 00000000 00000000 00000000 00000000
0001 00000000 00000001 00000010 0ooo1111
0010 00000000 00000010 00000100 ooo11110
1111 00000000 00001111 00011110 11100001

MULT2 - Multiply by 2
This operation takes imageA and shifts the pixel bits left by one, affectively multiplying it by
two.

- imageA(e/-O) MULT2
imageA 7 G output
8 o
opcode OB
Shift left

MULTI - Multiply immediate
Multiply immediate takes imageA, and shifts the pixel values left by userInputA

imageA

userlnputA

8 L ehit 1eft

Andrew Northy

MULTI

output

X

DIV2 - Divide by two

opcode 0C

Shift left by x

Much like MULT?2, the DIV2 operation takes imageA, and shifts it right by one, effectively

dividing it by two.

imageA

imageA(7-1) | DIV2
7 o N output
opcode OD
Shift right

DIVI — Divide Immediate

Divide immediate takes imageA and shifts the pixel values right by userlnputA.

imageA

userlnputA

8 Lshift right

DIVI

output

X

opcode OE
Shift right by x

Andrew Northy

Darken Highlights
For each pixel, the three color channel values are added together. This is compared with

userInputA (threshold).
If the sum is not greater than userInputA, the pixel is returned unchanged
If the sum is greater than userlnputA for this pixel, we will subtract the value of each color

channel by userlnputB.

Darken Highlights opcode 14
—ladd [-
userlnputA — a=B
imageA (red)
imageA (green) | L
imageA (blue |
geA (blue) | [MUX output
sub |
userlnputB sub
L 4
sub
(no roll-over subtraction)

Andrew Northy

Brighten Shadows

For each pixel, the three color channel values are added together. This is compared with
userInputA (threshold).

If the sum is not less than userInputA, the pixel is returned unchanged

If the sum is /ess than userInputA for this pixel, we will add the value of each color channel by
userlnputB.

Brighten Shadows opcode 15
—add [&
userlnputA —— ASE
imageA (red)
»
imageA (green)) L
imageA (blue | tput
geA (blue) | | VUK outpu
add |
userlnputB l add
add
(no roll-over addition)
Pixel flip

This operation connects the output of the incoming 3x3 pixel array in a flipped order.

original flipped

11213 9|87

4[5]6 6|54

71819 31211
Average

This function will sum the outer 8 values of the 3x3 pixel array, and then shift the results right
three times (effectively dividing by 8). This calculated value is what the 3x3 pixel output is set

to.
4 6 —| add shift right x3 —

—
[
[u}

-l
[mx]
O

Eric Liskay

Sobel Algorithm

-1 0+1] (-1 -2 -1]

G, =|-204+2|* A G,={0 0 O0|*A

-1 0+1] +1 +2 +1]
G =+GwG,

The above figure shows how Sobel edge detection is done mathematically. The
Sobel operator uses two 3x3 kernels which are convolved with a 3x3 array of pixels
from the image, denoted as A. Gx and Gy are the derivatives of the convolution. Gx is for
horizontal changes and Gy is for vertical changes. The * denotes the 2-dimensional
convolution operation.

The output G, the gradient magnitude, is obtained by squaring Gx and Gy, adding
them, and then taking the square root of the resulting sum. The approximate magnitude
can also be computed by just adding the absolute values of Gx and Gy. This may be
less accurate, but is faster to compute.

Convolution Mode Operations

A “regular mode” operation reads in a 3x3 pixel kernel and writes out a 3x3 pixel
kernel with all pixels being operated on individually. A “convolution mode” operation
reads in a 3x3 pixel kernel and uses data from those 9 pixels to write out one pixel, the
center one. In the first Sobel operation, | used one line of combinational logic to
compute derivatives Gx and G,. For all the remaining convolution operations, | use for-
loops to multiply and accumulate the derivatives. They are multiplied by a constant 3x3
kernel based on the operation such as Sobel or Prewitt. For opcode 0x27, a user-
defined kernel is used.

10

Eric Liskay

Opcodes

Mneumonic |Opcode |Description

add 0x00 add pixel channel values in array A to array B

addi 0x01 add userlnputA to values in all channels from array A

addir 0x02 add userlnputA to value in red channel from array A

addig 0x03 add userlnputA to value in green channel from array A

addib 0x04 add userlnputA to value in blue channel from array A

sub 0x05 subtract pixel channel values in array B from array A

subi 0x06 subtract userlnputA from values in all channels from array A

subir 0x07 subtract userlnputA from value in red channel from array A

subig 0x08 subtract userlnputA from value in green channel from array A

subib 0x09 subtract userlnputA from value in blue channel from array A

mult O0x0A multiply pixel channel values in array A by array B

mult2 0x0B multiply pixel channel values in array A by 2

multi 0x0C multiply pixel channel values in array A by shifting left by userlnputA

div2 0x0D divide pixel channel values in array A by 2

divi Ox0E divide pixel channel values in array A by shifting right by userlnputA

inv OxOF Invert pixel channel values in array A

and 0x10 AND pixel channel values in Array A with pixels in array B

or Ox11 OR pixel channel values in Array A with pixels in array B

nor 0x12 NOR pixel channel values in Array A with pixels in array B

Xor 0x13 XOR pixel channel values in Array A with pixels in array B

drkn 0x14 Darken Highlights: If sum of pixel channel values in array A are above
userlnputA, subtract userinputB

brtn 0x15 Brighten Shadows: If sum of pixel channel values in array A are below
userlnputA, add userinputB

grayr 0x16 Grayscale based on Red Channel

grayg 0x17 Grayscale based on Green Channel

grayb 0x18 Grayscale based on Blue Channel

pixflip 0x19 Pixels mirrored over middle pixel

sobel Ox1A Sobel

sobel2 0x1B Sobel Method 2

prewitt 0x1C Prewitt

robn 0x1D Robinson North

robnw Ox1E Robinson Northwest

robne Ox1F Robinson Northeast

robe 0x20 Robinson East

robw 0x21 Robinson West

robs 0x22 Robinson South

robse 0x23 Robinson Southeast

robsw 0x24 Robinson Southwest

avggry 0x25 3x3 pixel average in grayscale

avgclr 0x26 3x3 pixel average in color

ukernel 0x27 User programmable filter

min 0x28 3x3 pixel minimum

max 0x29 3x3 pixel maximum

11

Neraj Kumar

Color Codes for Manipulating pictures:
23 16 15 8 7 0

Basic Color Codes Table:

Basic colors:
Hex Code| Decimal Code
Color HTML/CSS Name #RRGGBB (R.G,B)
Black #000000 |(0,0.,0)
White #FFFFFF | (255,255,255)
Red #FF0000 | (255,0,0)
Lime #00FF00 | (0,255,0)
Blue #0000FF | (0,0,255)
Yellow #FFFFO0 | (255,255,0)
Cyan / Aqua #00FFFF | (0,255,255)
Magenta / Fuchsia #FFOOFF | (255,0,255)
Silver #COCOCO | (192,192,192)
Gray #808080 | (128,128,128)
Maroon #800000 |(128,0,0)
Qlive #808000 |(128,128.0)
Green #008000 |(0,128,0)
Purple #800080 |(128,0,128)
Teal #008080 |(0,128,128)
Navy #000080 |(0,0,128)

Using the above color table, we can give any kind of user defined color codes to manipulate the
pictures. As shown in the picture above, an array of RGB values is declared as 24 bits each
channel consists of 8 bits. Different combinations of bits produce different colors according to
which, we can select different combinations and mix and match the colors in the picture. Some
of the basic color codes are represented as shown in the table above. But there are many
different combinations which are possible

12

Eric Liskay

ImageProcessor.vhd

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

package pkg 1is
subtype channel is std_logic_vector(7 downto @); -- 8-bits per channel
type pixel is array (2 downto @) of channel;
type pixel_array is array (integer range <>,integer range <>) of pixel;
type kernel is array(2 downto 0,2 downto @) of integer;

end pkg;

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use std.textio.all;

use ieee.STD_LOGIC_TEXTIO.all;

use ieee.std_logic_arith.CONV_STD_LOGIC_VECTOR;
use ieee.numeric_std.unsigned;

use ieee.numeric_std.to_integer;

use work.pkg.all;

entity imageProcessor is

generic (
IMAGE_A_NAME : string := "toucan.raw"; -- Filename of Image A
IMAGE_B_NAME : string := "toucan.raw"; -- Filename of Image B
IMAGE_C_NAME : string := "output"; -- Filename of Image C
IMAGE_WIDTH : integer := 300; -- Width of image(s) in pixels
IMAGE_HEIGHT : integer := 180; -- Height of image(s) in pixels
IMAGE_CHANNELS : integer := 3 -- Channels: 3=RGBColor, 1=Grayscale

DK

port (
clock : in std_logic := '0Q';
go : in std_logic := '0Q';
number : in integer := 0;
opcode : in std_logic_vector(7 downto @) := x"FF";
userInputA : in std_logic_vector(7 downto @) := b"00000000";
userInputB : in std_logic_vector(7 downto @) := b"00000000";
userKernel : in kernel;
complete : out std_logic := '@’

D5

end imageProcessor;
architecture main of imageProcessor is
component Cell is

generic (
IMAGE_CHANNELS : integer := IMAGE_CHANNELS -- Channels: 3=RGBColor, 1=Grayscale

13

DK

port (
clock : in std_logic;
opcode : in std_logic_vector(7 downto 0);
userInputA : in std_logic_vector(7 downto 0);
userInputB : in std_logic_vector(7 downto 0);
userKernel : in kernel;
inputA : in pixel_array(2 downto 0,2 downto 0);
inputB : in pixel_array(2 downto 0,2 downto 0@);
outputC : out pixel_array(2 downto 0,2 downto @)

),

end component;

-- Width of tiles in pixels
constant TILE_WIDTH :

integer := 10;

type character_file is file of character;
file imageA, imageB, imageC : character_file;

-- Type definitions for Pixel Buffers

type pixelColumn is array ((IMAGE_HEIGHT-1) downto @) of pixel;

Eric Liskay

type pixelBuffer is array ((IMAGE_WIDTH-1) downto @) of pixelColumn;

signal pixelBufferA, pixelBufferB, PixelBufferC :

--Connections to Cell Processors
type cell_bus is array ((TILE_WIDTH-1) downto @,(TILE_WIDTH-1) downto @)
of pixel_array(2 downto 0,2 downto 0);

signal imageA2Cell, imageB2Cell, cell2ImageC :

signal ready, done, isComplete : std_logic := 'Q';

signal X, Y : integer

begin

-- Generate Cell
CellGenY:
for 1 in @ to
CellGenX:

for w in @
CellXY :
clock

userInputA
userInputB

1= 0;

Processors

(TILE_WIDTH-1) generate

to (TILE_WIDTH-1) generate
Cell port map (

=> clock,

opcode => opcode,

userKernel

inputA => imageA2Cell(w,1),

inputB => imageB2Cell(w,1),

outputC => cell2ImageC(w,1));
end generate CellGenX;

=> userInputA,
=> userInputB,
=> userKernel,

pixelBuffer;

cell_bus;

14

Eric Liskay

end generate CellGenY;

readImages: process(go)

variable char : character;
variable fstatus : FILE_OPEN_STATUS;

begin
report "Working on image #" & integer'image(number);
ready <= '0';

-- Open files and check to make sure they opened correctly
file_open(fstatus, imageA, IMAGE_A_NAME, read_mode);

assert (fstatus = open_ok) report "imageA not found" severity FAILURE;
file_open(fstatus, imageB, IMAGE_B_NAME, read_mode);

assert (fstatus = open_ok) report "imageB not found" severity FAILURE;

-- Read pixel data from files into Pixel Buffers
for h in @ to (IMAGE_HEIGHT-1) loop
for w in @ to (IMAGE_WIDTH-1) loop
for ¢ in @ to (IMAGE_CHANNELS-1) T1loop
read(imageA, char);
pixelBufferA(w)(h)(c) <= CONV_STD_LOGIC_VECTOR(character'pos(char), 8);
read(imageB, char);
pixelBufferB(w)(h)(c) <= CONV_STD_LOGIC_VECTOR(character'pos(char), 8);
end loop;
end loop;
end loop;

-- close files
file_close(imageA);
file_close(imageB);

ready <= '1';

--wait;
end process readImages;

SendToCells: process(clock)
variable my_line : line;
begin
if (rising_edge(clock) and (ready='1')) then

15

Eric Liskay

--Print for Debug
for h in @ to (IMAGE_HEIGHT-1) loop
for w in @ to (IMAGE_WIDTH-1) loop
if ((pixelBufferA(w)(h)(@) = b"00000000") and
(pixelBufferA(w)(h)(1) = b"00000000") and
(pixelBufferA(w)(h)(2) = b"00000000"))then
write(my_line, string'("*"));
elsif ((pixelBufferA(w)Ch)(@) = b"11111111") and
(pixelBufferA(w)(h)(1) = b"11111111") and
(pixelBufferA(w)(h)(2) = b"11111111"))then
write(my_line, string'("."));
elsif (pixelBufferA(w)(h)(@) = b"11111111")then
write(my_line, string'("R"));
elsif (pixelBufferA(w)Ch)(1) = b"11111111") then
write(my_line, string'("G"));
elsif (pixelBufferA(w)(h)(2) = b"11111111") then
write(my_line, string'("B"));
else
write(my_line, pixelBufferA(w)(h)(2)); --string'("?"));
end if;
end loop;
writelineCoutput,my_line);
end loop;
if(opcode >= x"1A") then
--Output tile to all Cells
for j in @ to (TILE_WIDTH-1) loop
for 1 in @ to (TILE_WIDTH-1) loop
for b in @ to 2 loop
for a in @ to 2 loop
1f(((x+1+a) < IMAGE_WIDTH) and ((y+j+b) < IMAGE_HEIGHT)) then
imageA2Cell(i,j)(a,b) <= PixelBufferA(x+i+a)(y+j+b);
imageB2Cell(i,j)(a,b) <= PixelBufferB(x+i+a)(y+j+b);

end if;
end loop;
end loop;
end loop;
end loop;
else

--Output tile to all Cells
for j in @ to (TILE_WIDTH-1) loop
for i in @ to (TILE_WIDTH-1) loop
for b in @ to 2 loop
for a in @ to 2 loop
imageA2Cell(i,j)(a,b) <= PixelBufferA(x+i*3+a)(y+j*3+b);
imageB2Cell(i, j)(a,b) <= PixelBufferB(x+i*3+a)(y+j*3+b);
end loop;
end loop;
end loop;

16

Eric Liskay

end loop;
end if;
end if;
end process SendToCells;

ReadFromCells: process(clock)
begin
if (falling_edge(clock) and (ready = '1')) then

if(opcode >= x"1A") then
for j in @ to (TILE_WIDTH-1) loop
for i in @ to (TILE_WIDTH-1) loop
1fC(((x+1+1) < IMAGE_WIDTH) and ((Cy+j+1) < IMAGE_HEIGHT)) then
PixelBufferC(x+i+1)(y+j+1) <= cell2ImageC(i,j)(1,1);
end if;
end loop;
end loop;

--Iterate through tiles on the x and y dimention
if (x < (IMAGE_WIDTH-TILE_WIDTH)) then

done <= '0";

X <= X + TILE_WIDTH;
elsif ((x >= (IMAGE_WIDTH-TILE_WIDTH)) and

(y < (IMAGE_HEIGHT-TILE_WIDTH))) then

X <= 0;

y <=y + TILE_WIDTH;
elsif (y >= (IMAGE_HEIGHT-TILE_WIDTH)) then

done <= '1";

X <= 0;

y <= 0;
end if;

else
-- Read output from all cells into Pixel Buffer C

for j in @ to (TILE_WIDTH-1) loop

for i in @ to (TILE_WIDTH-1) loop

for b in @ to 2 loop
for a in @ to 2 loop
PixelBufferC(x+i*3+a)(y+j*3+b) <= cell2ImageC(i,j)(a,b);
end loop;
end loop;

end loop;
end loop;
--Iterate through tiles on the x and y dimention
if (x < (IMAGE_WIDTH-3*TILE_WIDTH)) then

done <= '0";

X <= X + 3*TILE_WIDTH;

17

elsif ((x >= (IMAGE_WIDTH-3*TILE_WIDTH)) and
(y < (IMAGE_HEIGHT-3*TILE_WIDTH))) then

X <= 0;
y <=y + 3*TILE_WIDTH;

elsif (y >= (IMAGE_HEIGHT-3*TILE_WIDTH)) then
done <= '1";
X <= 0;
y <= 0;

end if;

end if;
end if;
end process ReadFromCells;

writeOutputImage: process(done)
variable char : character;
variable fstatus : FILE_OPEN_STATUS;
variable buf : line;

begin

if (done = '"1') then

-- Open output file

Eric Liskay

file_open(fstatus, imageC, (IMAGE_C_ NAVE & integer’ (nurber) & ".raw'™), write_mode);
assert (fstatus = open_ok) report "imageC could not be created" severity FAILURE;

-- Read pixel data from files into Pixel Buffers
for h in @ to (IMAGE_HEIGHT-1) loop
for w in @ to (IMAGE_WIDTH-1) loop
for ¢ in @ to (IMAGE_CHANNELS-1) 1loop

writeCimageC, character'val(to_integer(unsigned(pixelBufferCw)(h)())));

end loop;
end loop;
end loop;

-- close files
file_close(image();

complete <= not isComplete;
isComplete <= not isComplete;

--assert (1=2) report "Finished processing!" severity FAILURE;

end if;
end process writeOutputImage;
end main;

18

Cell.vhd

library IEEE;

Eric Liskay

use
use
use
use

TEEE.STD_LOGIC_1164.ALL;
ieee.std_logic_unsigned.all;
ieee.std_logic_arith.all;
work.pkg.all;

integer :=

std_logic;

3 -- Channels: 3=RGBColor, 1=Grayscale

std_logic_vector(7 downto 0);
std_logic_vector(7 downto 0);
std_logic_vector(7 downto 0);
kernel;

pixel_array(2 downto 0,2 downto @);
pixel_array(2 downto 0,2 downto 0);

entity Cell is
generic (
IMAGE_CHANNELS :
D3
port (
clock : in
opcode :1in
userInputA : 1in
userInputB : 1in
userKernel : in
inputA : in
inputB : in
outputC
D3
end Cell;

architecture CellArch of Cell i

constant
constant
constant
constant

constant
constant
constant
constant
constant
constant
constant
constant

constant

function

begin
for 1i

right(@):="1";

Sobelx
Sobely

Prewittx :
Prewitty :

RobinsonN

RobinsonNE :

RobinsonE

RobinsonSE :

RobinsonS

RobinsonSW :

RobinsonW

RobinsonNW :

Average :

sgrt (d :
variable a :
variable q :
variable
variable i

in @ to 15

left,right,r :
L : integer:=0;

loop

right(1):=r(17);
right(17 downto 2):=q;
left(1l downto @):=a(31 downto 30);

: out pixel_array(2 downto 0,2 downto @)

1s

: kernel := (('1’0’1)’('1’0’2)’(_1’0’1));

: kernel := ((-1,-2,-1),(0,0,0),(1,2,1));
kernel := ((_17_17_1)7(07070),(1,1’1));
kernel := ((_19691)9(_190’1)’(_1’0’1));

: kernel := ((1,2’1)’(0’0’0)’(_1’_2’_1));
kernel := ((@,1,2),(—1,@,1),(—2,—1,0));
: kernel := ((—1,0,1),(—2,@,2),(—1,0,1));
kernel := ((_2)_1)6)’(_1’0’1)’(6’1’2));
: kernel := (('1’_2"1)’(01010)’(1’2’1));
kernel := ((Q’_1"2)’('1’0’_1)’(2’1’0))’
: kernel := ((1707_1)7(2,07_2),(1,1,_1));
kernel := ((27170),(170,_1)’(0,_1,_2));
kernel := ((1’1’1)’(1’1’1)’(1’1’1));

UNSIGNED) return UNSIGNED is
unsigned(31 downto @):=d;
unsigned(15 downto @):=Cothers => '0');
unsigned(17 downto @):=Cothers => '0');

--original input.
--result.

19

Eric Liskay

left(17 downto 2):=r(15 downto 0);
a(31 downto 2):=a(29 downto @); --shifting by 2 bit.
if (r(17) = '"1") then
r := left + right;
else
r := left - right;
end if;
q(15 downto 1) := q(14 downto @);
q(@) := not r(17);
end loop;
return q;
end sqgrt;

begin

process(opcode,userInputA,inputA,inputB) is
variable Gx, Gy : signed(15 downto @) := (others=> '0');
variable Gu : unsigned(15 downto @);
variable Gsqd : unsigned(31 downto @);
variable tempvar : unsigned(1@ downto 0);
variable tempsignal_red : std_logic_vector(1@ downto @);
variable tempsignal_green : std_logic_vector(1@ downto 0@);
variable tempsignal_blue : std_logic_vector(1@ downto 0);
begin
case opcode is
when x"00" => -- ADD
for y in @ to 2 loop
for x in @ to 2 loop
for ¢ in @ to (IMAGE_CHANNELS-1) loop
outputC(x,y)(c) <= inputA(x,y)(c) + inputB(x,y)(c);
end loop;
end loop;
end loop;

when x"01" => -- ADDI
for y in @ to 2 loop
for x in @ to 2 loop
for ¢ in @ to (IMAGE_CHANNELS-1) 1loop
outputC(x,y)(c) <= inputA(x,y)(c) + userInputA;
end loop;
end loop;
end loop;

when x"02" => -- ADDIR
for y in @ to 2 loop
for x in @ to 2 loop
outputC(x,y)(@) <= inputA(x,y)(@) + userInputA;
outputC(x,y)(1) <= inputA(x,y)(D);
outputC(x,y)(2) <= inputA(x,y)(2);
end loop;
end loop;

when x"03" => -- ADDIG

for y in @ to 2 loop
for x in @ to 2 loop

outputC(x,y)(@) <= inputA(x,y)(@);

20

<=

outputC(x,y)(D)

outputC(x,y)(2)
end loop;

end loop;

when x"04" => -- ADDIB
for y in @ to 2 loop
for x in @ to 2 loop
outputC(x,y) (@)
outputC(x,y)(D)
outputC(x,y)(2)
end loop;
end loop;

when x"05" => -- SUB
for y in @ to 2 loop
for x in @ to 2 loop
for ¢ in @ to (IMAGE
outputC(x,y)(c)
end loop;
end loop;
end loop;

when x"06" => -- SUBI
for y in @ to 2 loop
for x in @ to 2 loop
for ¢ in @ to (IMAGE
outputC(x,y)(c)
end loop;
end loop;
end loop;

when x"@7" => -- SUBIR
for y in @ to 2 loop
for x in @ to 2 loop

outputC(x,y)(@) <=
outputC(x,y)(1) <=
outputC(x,y)(2) <=
end loop;
end loop;
when x"08" => -- SUBIG
for y in @ to 2 loop
for x in @ to 2 loop
outputC(x,y)(@) <=
outputC(x,y)(1) <=
outputC(x,y)(2) <=
end loop;
end loop;
when x"09" => -- SUBIB
for y in @ to 2 loop
for x in @ to 2 loop
outputC(x,y)(@) <=
outputC(x,y)(1) <=
outputC(x,y)(2) <=

Eric Liskay

inputA(x,y)(1) + userInputA;
inputA(x,y)(2);

inputA(x,y)(@);
inputA(x,y)(1);
inputA(x,y)(2) + userInputA;

_CHANNELS-1) Toop
<= inputA(x,y)(c) - inputB(x,y)(c);

_CHANNELS-1) Toop
<= 1nputA(x,y)(c) - userInputA;

inputA(x,y)(@) - userInputA;
inputA(x,y)(1);
inputA(x,y)(2);

inputA(x,y)(0);
inputA(x,y)(1) - userInputA;

inputA(x,y)(2);

inputA(x,y)(0);
inputA(x,y)(1);
inputA(x,y)(2) - userInputA;

21

Andrew Northy &Eric Liskay

end loop;
end loop;

when x"0A" => -- MULT
for y in @ to 2 loop
for x in @ to 2 loop
for ¢ in @ to (IMAGE_CHANNELS-1) loop
outputC(x,y)(c) <= (inputA(x,y)(c)(7 downto 4) *
inputB(x,y)(c)(7 downto 4));
end loop;
end loop;
end loop;

when x"0B" => -- MULT 2
for y in @ to 2 loop
for x in @ to 2 loop
for ¢ in @ to (IMAGE_CHANNELS-1) loop
outputC(x,y)(c) <= inputA(x,y)(c)(6 downto @) & '0';
end loop;
end loop;
end loop;

when x"0C" => -- MULTI
for y in @ to 2 loop
for x in @ to 2 loop
for ¢ in @ to (IMAGE_CHANNELS-1) 1loop
outputC(x,y)(c) <= shl(inputA(x,y)(c), userInputA);
end loop;
end loop;
end loop;

when x"@D" => -- DIV 2
for y in @ to 2 loop
for x in @ to 2 loop
for ¢ in @ to (IMAGE_CHANNELS-1) loop
outputC(x,y)(c) <= '0' & inputA(x,y)(c)(7 downto 1);
end loop;
end loop;
end loop;

when x"QE" => -- DIVI
for y in @ to 2 loop
for x in @ to 2 loop
for ¢ in @ to (IMAGE_CHANNELS-1) 1loop
outputC(x,y)(c) <= shr(inputA(x,y)(c), userInputA);
end loop;
end loop;
end loop;

when x"QF" => -- INV
for y in @ to 2 loop
for x in @ to 2 loop
for ¢ in @ to (IMAGE_CHANNELS-1) loop
outputC(x,y)(c) <= inputA(x,y)(c) xor "11111111";
end loop;
end loop;

22

Andrew Northy &Eric Liskay

end loop;

when x"10" => -- AND
for y in @ to 2 loop
for x in @ to 2 loop
for ¢ in @ to (IMAGE_CHANNELS-1) loop
outputC(x,y)(c) <= inputA(x,y)(c) and inputB(x,y)(c);
end loop;
end loop;
end loop;

when x"11" => -- OR
for y in @ to 2 loop
for x in @ to 2 loop
for ¢ in @ to (IMAGE_CHANNELS-1) loop
outputC(x,y)(c) <= inputA(x,y)(c) or inputB(x,y)(c);
end loop;
end loop;
end loop;

when x"12" => -- NOR
for y in @ to 2 loop
for x in @ to 2 loop
for ¢ in @ to (IMAGE_CHANNELS-1) loop
outputC(x,y)(c) <= inputA(x,y)(c) nor inputB(x,y)(c);
end loop;
end loop;
end loop;

when x"13" => -- XOR
for y in @ to 2 loop
for x in @ to 2 loop
for ¢ in @ to (IMAGE_CHANNELS-1) loop
outputC(x,y)(c) <= inputA(x,y)(c) xor inputB(x,y)(c);
end loop;
end loop;
end loop;

when x"14" => -- Darken Highlights
for y in @ to 2 loop
for x in @ to 2 loop
tempvar := unsigned(("000" & inputA(x,y)(@)) + ("000" &
inputA(x,y) (1)) + ("000" & inputA(x,y)(2)));
tempvar := "00" & tempvar(1l@ downto 2);
if (tempvar > unsignedCuserInputA)) then
for ¢ in @ to (IMAGE_CHANNELS-1) loop
1f((inputA(x,y)(c) - userInputB) <= (inputA(x,y)(c))) then
outputC(x,y)(c) <= inputA(x,y)(c) - userInputB;
else
outputC(x,y)(c) <= (others => '0");
end if;
end loop;
else
outputC(x,y)(@) <= inputA(x,y)(0);
outputC(x,y)(1) <= inputA(x,y)(1);
outputC(x,y)(2) <= inputA(x,y)(2);

23

Andrew Northy &Eric Liskay

end if;
end loop;
end loop;

when x"15" => -- Brighten Shadows
for y in @ to 2 loop
for x in @ to 2 loop
tempvar := unsigned(("000" & inputA(x,y)(@)) + ("000" &
inputA(x,y)(1)) + ("000" & inputA(x,y)(2)));

tempvar := "00" & tempvar(1l@ downto 2);

if (tempvar < unsignedCuserInputA)) then
for ¢ in @ to (IMAGE_CHANNELS-1) loop

1f((inputA(x,y)(c) + userInputB) >= (inputA(x,y)(c))) then
outputC(x,y)(c) <= inputA(x,y)(c) + userInputB;
else
outputC(x,y)(c) <= (others => '1");
end if;

end loop;

else
outputC(x,y)(@) <= inputA(x,y)(@);
outputC(x,y)(1) <= inputA(x,y)(D);
outputC(x,y)(2) <= inputA(x,y)(2);

end if;

end loop;
end loop;

when x"16" => -- Grayscale (Red channel)
for y in @ to 2 loop
for x in @ to 2 loop
for ¢ in @ to (IMAGE_CHANNELS-1) loop
outputC(x,y)(c) <= inputA(x,y)(0);
end loop;
end loop;
end loop;

when x"17" => -- Grayscale (Green channel)
for y in @ to 2 loop
for x in @ to 2 loop
for ¢ in @ to (IMAGE_CHANNELS-1) 1loop
outputC(x,y)(c) <= inputA(x,y)(D);
end loop;
end loop;
end loop;

when x"18" => -- Grayscale (Blue channel)
for y in @ to 2 loop
for x in @ to 2 loop
for ¢ in @ to (IMAGE_CHANNELS-1) 1loop
outputC(x,y)(c) <= inputA(x,y)(2);
end loop;
end loop;
end loop;

when x"19" => --pixel flip

for ¢ in @ to 2 loop

24

outputC(2,2)(c)
outputC(2,1)(c)
outputC(2,0)(c)
outputC(1,2)(c)
outputC(1,1)(c)
outputC(1,0)(c)
outputC(@,2)(c)
outputC(@,1)(c)
outputC(0,0)(c)

inputA(0,0)(c);
inputA(0,1)(c);
inputA(0,2)(c);
inputA(1,0)(c);
inputA(l1,1)(c);
inputA(l1,2)(c);
inputA(2,0)(c);
inputA(2,1)(c);
inputA(2,2)(c);

Andrew Northy &Eric Liskay

end loop; -- cC

when x"1A" => -- Sobel Edge
Gx := (others=>'0");
Gy := (others=>'0");

--sobel mask for gradient in horiz. direction

Gx :=conv_signed(conv_integer((inputA(0,2)(@)-inputA(0,0)(0))
+(sh1((inputA(1,2)(@)-inputA(@,1)(@)), B"0000000001"))
+(inputA(2,2)(@)-inputA(0,2)(2))),16);

--sobel mask for gradient in vertical direction

Gy :=conv_signed(conv_integer((inputA(@,0)(@)-inputA(0,2)(0))
+(sh1((inputA(1,0)(@)-inputA(1,2)(@)), B"0000000001"))
+(inputA(@,2)(@)-inputA(2,2)(0))),16);

Gsqd := conv_unsigned((conv_integer(Gx)**2)+ (conv_integer(Gy)**2),32);
Gu := sqrt(Gsqd);

if((Gu > conv_UNSIGNED(255, 16)) or (Gu < conv_UNSIGNED(7@, 16))) then
Gu := (others => "1");
end if;

for ¢ in @ to (IMAGE_CHANNELS-1) 1loop
outputC(1,1)(c) <= conv_std_logic_vector(Gu,8) xor "11111111";
end loop;

when x"1B" => -- Sobel Chrome
Gx := (others=>'0");
Gy := (others=>'0");
for y in @ to 2 loop
for x in @ to 2 loop
Gx := Gx + conv_signed((conv_integer(unsigned(inputA(x,y)

(@))) * Sobelx(x,y)),16);
Gy := Gy + conv_signed((conv_integer(unsigned(inputA(x,y)

(@))) * Sobely(x,y)),16);
end loop;

end loop;

Gsqd := conv_unsigned((conv_integer(Gx)**2)+ (conv_integer(Gy)**2),32);
Gu := sqrt(Gsqd);

if(Gu > conv_UNSIGNED(255, 16)) then

Gu := (others => "1");
end if;

25

Eric Liskay

for ¢ in @ to (IMAGE_CHANNELS-1) loop
outputC(1,1)(c) <= conv_std_logic_vector(Gu,8);
end loop;

when x"1C" => -- Prewitt
Gx := (others=>'0");
Gy := (others=>'0");
for y in @ to 2 loop
for x in @ to 2 loop
Gx := Gx + conv_signed((conv_integer(unsigned(inputA(x,y)
(@))) * Prewittx(x,y)),16);
Gy := Gy + conv_signed((conv_integer(unsigned(inputA(x,y)
(@))) * Prewitty(x,y)),16);
end loop;
end loop;

Gsqd := conv_unsigned((conv_integer(Gx)**2)+ (conv_integer(Gy)**2),32);
Gu := sqrt(Gsqd);

if(Gu > conv_UNSIGNED(255, 16)) then
Gu := (others => "1");
end if;

for ¢ in @ to (IMAGE_CHANNELS-1) 1loop
outputC(1,1)(c) <= conv_std_logic_vector(Gu,8);
end loop;

when x"1D" => -- RobinsonN
Gx := (others=>'0");

for y in @ to 2 loop
for x in @ to 2 loop

Gx := Gx + conv_signed((conv_integer(unsigned(inputA(x,y)
(@))) * RobinsonN(x,y)),16);
end loop;
end loop;

Gu := conv_unsigned(abs(Gx),16);

if(Gu > conv_UNSIGNED(255, 16)) then
Gu := (others => "1");
end if;

for ¢ in @ to (IMAGE_CHANNELS-1) 1loop
outputC(1,1)(c) <= conv_std_logic_vector(Gu,8);
end loop;

when x"1E" => -- RobinsonNW
Gx := (others=>'0");

for y in @ to 2 loop
for x in @ to 2 loop
Gx := Gx + conv_signed((conv_integer(unsigned(inputA(x,y)
(@))) * RobinsonNW(x,y)),16);

end loop;

26

Eric Liskay

end loop;
Gu := conv_unsigned(abs(Gx),16);

if(Gu > conv_UNSIGNED(255, 16)) then
Gu := (others => '"1");
end if;

for ¢ in @ to (IMAGE_CHANNELS-1) 1loop
outputC(1,1)(c) <= conv_std_logic_vector(Gu,8);
end loop;

when x"1F" => -- RobinsonNE
Gx := (others=>'0");

for y in @ to 2 loop
for x in @ to 2 loop
Gx := Gx + conv_signed((conv_integer(unsigned(inputA(x,y)
(@))) * RobinsonNE(x,y)),16);
end loop;
end loop;

Gu := conv_unsigned(abs(Gx),16);

if(Gu > conv_UNSIGNED(255, 16)) then
Gu := (others => "1");
end if;

for ¢ in @ to (IMAGE_CHANNELS-1) loop
outputC(1,1)(c) <= conv_std_logic_vector(Gu,8);
end loop;

when x"20" => -- RobinsonE
Gx := (others=>'0");

for y in @ to 2 loop
for x in @ to 2 loop

Gx := Gx + conv_signed((conv_integer(unsigned(inputA(x,y)
(@))) * RobinsonE(x,y)),16);
end loop;
end loop;

Gu := conv_unsigned(abs(Gx),16);
if(Gu > conv_UNSIGNED(255, 16)) then
Gu := (others => "1");
end if;
for ¢ in @ to (IMAGE_CHANNELS-1) loop
outputC(1,1)(c) <= conv_std_logic_vector(Gu,8);
end loop;

when x"21" => -- RobinsonW
Gx := (others=>'0");

for y in @ to 2 loop

27

Eric Liskay

for x in @ to 2 loop

Gx := Gx + conv_signed((conv_integer(unsigned(inputA(x,y)
(@))) * RobinsonW(x,y)),16);
end loop;
end loop;

Gu := conv_unsigned(abs(Gx),16);

if(Gu > conv_UNSIGNED(255, 16)) then
Gu := (others => "1");
end if;

for ¢ in @ to (IMAGE_CHANNELS-1) loop
outputC(1,1)(c) <= conv_std_logic_vector(Gu,8);
end loop;

when x"22" => -- RobinsonS
Gx := (others=>'0");

for y in @ to 2 loop
for x in @ to 2 loop

Gx := Gx + conv_signed((conv_integer(unsigned(inputA(x,y)
(@))) * RobinsonS(x,y)),16);
end loop;
end loop;

Gu := conv_unsigned(abs(Gx),16);

if(Gu > conv_UNSIGNED(255, 16)) then
Gu := (others => "1");
end if;

for ¢ in @ to (IMAGE_CHANNELS-1) 1loop
outputC(1,1)(c) <= conv_std_logic_vector(Gu,8);
end loop;

when x"23" => -- RobinsonSE
Gx := (others=>'0");

for y in @ to 2 loop
for x in @ to 2 loop

Gx := Gx + conv_signed((conv_integer(unsigned(inputA(x,y)
(@))) * RobinsonSE(x,y)),16);
end loop;
end loop;

Gu := conv_unsigned(abs(Gx),16);

if(Gu > conv_UNSIGNED(255, 16)) then
Gu := (others => "1");

end if;

for ¢ in @ to (IMAGE_CHANNELS-1) 1loop

outputC(1,1)(c) <= conv_std_logic_vector(Gu,8);
end loop;

28

Andrew Northy &Eric Liskay
when x"24" => -- RobinsonSW
Gx := (others=>'0");

for y in @ to 2 loop
for x in @ to 2 loop

Gx := Gx + conv_signed((conv_integer(unsigned(inputA(x,y)
(@))) * RobinsonSW(x,y)),16);
end loop;
end loop;

Gu := conv_unsigned(abs(Gx),16);

if(Gu > conv_UNSIGNED(255, 16)) then
Gu := (others => "1");
end if;

for ¢ in @ to (IMAGE_CHANNELS-1) 1loop
outputC(1,1)(c) <= conv_std_logic_vector(Gu,8);
end loop;

when x"25" => -- average Grayscale
Gx := (others=>'0");

for y in @ to 2 loop
for x in @ to 2 loop

Gx := Gx + conv_signed((conv_integer(unsigned(inputA(x,y)
(@))) * Average(x,y)),16);
end loop;
end loop;

Gu := "0000" & conv_unsigned(abs(Gx),16)(15 downto 4);

if(Gu > conv_UNSIGNED(255, 16)) then
Gu := (others => "1");
end if;

for ¢ in @ to (IMAGE_CHANNELS-1) loop
outputC(1,1)(c) <= conv_std_logic_vector(Gu,8);
end loop;

when x"26" => --average color
tempsignal_red := ("000"&inputA(0,0)(0)) + ("000"&inputA(0,1)(0))
+ ("000"&inputA(0,2)(@)) + ("000"&inputA(1,0)(@)) +
("000"&inputA(1,2)(@)) + ("000"&inputA(2,0)(@)) +
("000"&inputA(2,1)(@)) + ("000"&inputA(2,2)(@));

tempsignal_green := ("000"&inputA(0,0)(1)) + ("000"&inputA(@,1)(1))
+ ("000"&inputA(0,2)(1)) + ("000"&inputA(l,®(1)) +
("000"&inputA(1,2)(1)) + ("000"&inputA(2,0)(1)) +
("000"&inputA(2, D)) + ("000"&inputA(2,2)(1));

tempsignal_blue := ("000"&inputA(@,0)(2)) + ("000"&inputA(0,1)(2))
+ ("000"&inputA(0,2)(2)) + ("000"&inputA(1,0)(2)) +
("000"&inputA(1,2)(2)) + ("000"&inputA(2,0)(2)) +
("000"&inputA(2,1)(2)) + ("000"&inputA(2,2)(2));

29

Andrew Northy &Eric Liskay

outputC(1,1)(@) <= tempsignal_red(10 downto 3);
outputC(1,1)(1) <= tempsignal_green(1@ downto 3);
outputC(1,1)(2) <= tempsignal_blue(1@ downto 3);

when x"27" => -- UserFilter
Gx := (others=>'0");

for y in @ to 2 loop
for x in @ to 2 loop
Gx := Gx + conv_signed((conv_integer(unsigned(inputA(x,y)
(@))) * userKernel(x,y)),16);
end loop;
end loop;

Gu := conv_unsigned(abs(Gx),16);

if(Gu > conv_UNSIGNED(255, 16)) then
Gu := (others => "1");
end if;

for ¢ in @ to (IMAGE_CHANNELS-1) 1loop
outputC(1,1)(c) <= conv_std_logic_vector(Gu,8);
end loop;

when x"28" => --min per channel

inputA(0,0)(0);
inputA(0,0)(1);
inputA(0,0)(2);

tempsignal_red(7 downto @)
tempsignal_green(7 downto @) :
tempsignal_blue(7 downto @)

for x in @ to 2 loop
for y in @ to 2 loop
if tempsignal_red(7 downto @) > inputA(x,y)(@) then
tempsignal_red(7 downto @) := inputA(x,y)(@);
end if;
end loop; --y
end loop; -- x

for x in @ to 2 loop
for y in @ to 2 loop
if tempsignal_green(7 downto @) > inputA(x,y)(1) then
tempsignal_green(7 downto @) := inputA(x,y)(1);
end if;
end loop; --y
end loop; -- x

for x in @ to 2 loop
for y in @ to 2 loop
if tempsignal_blue(7 downto @) > inputA(x,y)(2) then
tempsignal_blue(7 downto @) := inputA(x,y)(2);
end if;
end loop; --y
end loop; -- X

outputC(1,1)(@) <= tempsignal_red(7 downto 0);

30

Andrew Northy &Eric Liskay

outputC(1,1)(1) <= tempsignal_green(7 downto 0);
outputC(1,1)(2) <= tempsignal_blue(7 downto 0);

when x"29" => --max per channel
inputA(0,0)(0);

inputA(0,0)(1);
inputA(0,0)(2);

tempsignal_red(7 downto @)
tempsignal_green(7 downto @) :
tempsignal_blue(7 downto @)

for x in @ to 2 loop
for y in @ to 2 loop
if tempsignal_red(7 downto @) < inputA(x,y)(@) then
tempsignal_red(7 downto @) := inputA(x,y)(@);
end if;
end loop; --y
end loop; -- x

for x in @ to 2 loop
for y in @ to 2 loop
if tempsignal_green(7 downto @) < inputA(x,y)(1) then
tempsignal_green(7 downto @) := inputA(x,y)(1);
end if;
end loop; --y
end loop; -- X

for x in @ to 2 loop
for y in @ to 2 loop
if tempsignal_blue(7 downto @) < inputA(x,y)(2) then
tempsignal_blue(7 downto @) := inputA(x,y)(2);
end if;
end loop; --y
end loop; -- X

outputC(1,1)(@) <= tempsignal_red(7 downto 0);
outputC(1,1)(1) <= tempsignal_green(7 downto 0);
outputC(1,1)(2) <= tempsignal_blue(7 downto 0);

-- INSERT MORE INSTRUCTIONS HERE!

when x"FF" => -- NOP
null;
when others =>
report "NOT A VALID OPCODE!" severity FAILURE;
end case;
end process;
end CellArch;

31

Eric Liskay

Simulation and Testing

Simulation was done using Mentor Graphics Questa 6.3g. Since |, Eric Liskay,
came up with the idea for an SIMD image processor, | had to first prove that reading
images into an array using a HDL was possible. Initially, | used SystemVerilog since |
was more familiar with the language. The description of the code in SystemVerilog
turned out to be much more concise and easy to read than the VHDL in the previous
pages. On the next page is the SV code that | created to read in an image and print out
the input to the screen in ASCII. | used this to determine how the RAW file was
formatted and how to correctly read it into a two dimensional array.

| then created an equivalent VHDL program to prove that this could be done in
the VHDL as well. The equivalent VHDL code, performing the exact same operation and
display can be seen on the following 2(!) pages.

The majority of testing and debugging that | did involved looking at the output
image. If it was not displaying correctly, it was usually pretty obvious where the problem
was. Once the image processor controller was working correctly, there was no need to
look at the waveform output. | created a testbench which instantiates the
ImageProcessor, sets inputs, and performs processing on all the opcodes in sequence.
The testbench can be seen on later pages.

For simulation, | found that Questa(32-bit) ran out of memory if the image size
was much larger than 600x390 pixels. With a 64-bit simulator, | would have been able to
process larger images.

With a clock period of 20 ns, a 600x390 image took 5.2 us to process in regular
mode. The same image took 46.8 s to process in convolution mode. This includes the
time it takes to read the image from the drive, process the operation, and write the
output image to the drive. In real time, a regular mode image took on average 0.76s to
process. The same image in convolution mode took on average 2.7s to process in real
time.

| attempted to synthesize the image processor in Altera Quartus, expecting to get
errors on the file open commands. However, Quartus gets to the fitting stage of
synthesis and runs into that program’s 32-bit memory limit. In order to run in 64-bit
mode, | would have to use the purchased “subscription edition” version of Quartus.

32

Eric Liskay

ImageTest.sv (used in initial testing and proof-of-concept)

module 1imagetest();
integer file, r;
int 1, %
tyBede struct packed {
yte unsigned R;
byte unsigned G
byte un51gned

} pix
p1xe1 array[lS@][lS@] // [height][width]

initial be%
file = open("RGBlnt15® raw", "rb");
r —$Fread(array
for(i = ; $512e(array 1); i++) begin
for (3 = 0 J < $51ze(array 2); j++) begin
if (array[lj[J == 0)
$Wr1teg"*")
else if (array[i][j] == '1)
$write(".");
else if (array[lj[J] R="1)
$write("R");
else if (array[i][j].G == "1)
$wr1teE"G"),

1 f rr B ="1
5o H oy Liln 6 == "D

$Wr1te("?");

end
$write("\n");
end
end
endmodule

else

33

Eric Liskay

ImageTest.vhd (used in initial testing and proof-of-concept)
library IEEE;

use TEEE.STD_LOGIC_1164.ALL;

use ieee.std_logic_textio.all;

use ieee.std_logic_arith.all;

use std.textio.all;

entity imageTest is
end imageTest;
architecture main of imageTest is

function to_string(sv: Std_Logic_Vector) return string is
use Std.TextIO.all;

variable bv: bit_vector(sv'range) := to_bitvector(sv);
variable 1lp: line;
begin

write(lp, bv);
return 1lp.all;
end;

begin
process is
variable i,j,c : integer;

subtype channel is std_logic_vector(7 downto 0);

type pixel is array (2 downto @) of channel;

type pixelArrayld is array (149 downto @) of pixel;

type pixelArray2d is array (149 downto @) of pixelArrayld;
variable pixelarray : pixelArray2d;

type character_file is file of character;
file myfile: character_file;

variable character_variable : character;
variable my_line : line;

variable fstatus: FILE_OPEN_STATUS;

begin
file_open(fstatus, myfile, "RGBintl150.raw", read_mode);
assert (fstatus = open_ok);

for 1 in @ to 149 loop

for j in @ to 149 loop
for c in @ to 2 1loop

34

Eric Liskay

read(myfile, character_variable);
pixelarray(i)(G)(c) := (ONV_STD_LOGIC VECTOR(character'pos(dharacter_varidble), 8);
end loop;
if ((pixelarray(i)(j)(@) = b"00000000") and
(pixelarray(i)(3D(1) = b"00000000") and
(pixelarray(i)(3)(2) = b"00000000"))then
write(my_line, string'("*"));
elsif ((pixelarray(id)(j)(@) = b"11111111") and
(pixelarray(i)(3D(1) = b"11111111") and
(pixelarray(i)(3)(2) = b"11111111"))then
write(my_line, string'("."));
elsif (pixelarray(i)(j)(@) = b"11111111")then
write(my_line, string'("R"));
elsif (pixelarray(i)(3)(1) = b"11111111") then
write(my_line, string'("G"));
elsif (pixelarray(i)(j)(2) = b"11111111") then
write(my_line, string'("B"));
else
write(my_line, string'("?"));
end if;
end loop;
writelineCoutput,my_line);
end loop;

wait;
end process;
end main;

35

Testbench.vhd

library IEEE;
TEEE.STD_LOGIC_1164.ALL;
std.textio.all;
ieee.STD_LOGIC_TEXTIO.all;
ieee.std_logic_arith.CONV_STD_LOGIC_VECTOR;
ieee.numeric_std.all;

use
use
use
use
use
use

work.

pkg.all;

entity testbench is
end testbench;

architecture test of testbench is

signal
signal
signal
signal
signal
signal
signal
signal

number
clock
go
opcode

userInputA :
userInputB :

complete
userKernel

. integer :
: std_logic :
: std_logic
: std_logic_vector(7 downto @) :
std_logic_vector(7 downto @) :
std_logic_vector(7 downto @) :
: std_logic
: kernel

component ImageProcessor is

ge

)

por

);

end co

neric (

IMAGE_A_NAME
IMAGE_B_NAME
IMAGE_C_NAME

IMAGE_WIDTH

IMAGE_HEIGHT

IMAGE_CHANNELS :

t (

clock

go

number
opcode
userInputA
userInputB
userKernel
complete

mponent;

: 1in
: 1in
: 1in

Eric Liskay

0;
= I@I;

:= '0';

X"FF";
b"00000000" ;
b"00000000" ;

:= '@';
= ((0,0,0),(0,0’0)’(0’0’0));

: string := "toucan600x390.raw"; -- Filename of Image A
: string := "toucanc@@x390.raw"; -- Filename of Image B
: string := "output"; -- Filename of Image C
: integer := 600; -- Width of image(s) in pixels
. integer := 390; -- Height of image(s) in pixels
integer := 3 -- Channels: 3=RGBColor, 1=Grayscale
std_logic := '0";
std_logic := '0';
integer := 0;
std_logic_vector(7 downto 0);

:in
. 1in
:in
:in

std_logic_vector(7 downto 0);
std_logic_vector(7 downto 0);

kernel;
: out std_logic :=

'0'

36

Eric Liskay

begin

I1 : ImageProcessor port map (clock, go, number, opcode, userInputA,
userInputB, userKernel, complete);

clock <= not clock after 10 ns;

opcode <= std_logic_vector(to_unsignedCnumber,8));
userInputA <= B"00010000";

userInputB <= B"01000000";

userKernel <= ((0,-1,0),(-1,4,-1),(0,-1,0));

process(complete) is
begin
assert (number<50) report "Finished processing!" severity FAILURE;
if(not((number=0) and (complete = 'Q'))) then
go <= nhot go;
number <= number + 1;
end if;
end process;
end test;

37

Comparison between VHDL and System Verilog:

1.

3. System Verilog makes very easy to read any file with a single line Code.
filel = $fopen("toucan.raw", "rb");
r =$fread(ImageA,filel);
$fclose(filel);
filel = $fopen("toucan.raw"”, "rb");
r =$fread(ImageB,filel);
$fclose(filel);

Neraj Kumar

In System Verilog Package is used more extensively, this can be imported by any module
in their SCompilation Unit and can be referenced. Functions and tasks can be defined in
package and can be called by any module by referencing it. It helps to avoid unnecessary

repetition.

While in VHDL use of package is limited.

System Verilog introduces unique Case, which states that only one condition could be

true at a time. It makes very easy for fault verification.

function automatic pixel operate(byte userinput,byte opcode, pixel X,

pixel Y);

begin

pixel Z;

unique case(opcode)

8'h00:begin
= (X.R + Y.R);

Z.R
Z.G = (X.G + Y.G);
Z.B = (X.B + Y.B);

end
8'h@1:begin
Z.R = (X.R);
2.6 = (X.G);
Z.B = (X.B);
end

default: $info("Invalid Opcode");
endcase

There is no such tool in VHDL.

38

Neraj Kumar

But in VHDL we have to define the width and height of file and have to read it
sequentially and have to go through long iterations in loops.

file_open(fstatus, imageA, IMAGE_A_NAME, read_mode);
assert (fstatus = open_ok) report "imageA not found" severity FAILURE;
file_open(fstatus, imageB, IMAGE_B_NAME, read_mode);
assert (fstatus = open_ok) report "imageB not found" severity FAILURE;

for h in @ to (IMAGE_HEIGHT-1) loop
for w in @ to (IMAGE_WIDTH-1) loop
for ¢ in @ to (IMAGE_CHANNELS-1) 1loop
read(imageA, char);
pixelBufferA(W)(h)(c) <= CONV_STD_LOGIC_VECTOR(character'pos(char), 8);
read(imageB, char);
pixelBufferBwW)(h)(c) <= CONV_STD_LOGIC_VECTOR(character'pos(char), 8);
end loop;
end loop;
end loop;

file_close(imageA);
file_close(imageB);

System Verilog also introduces concept of Randomization which produces random test
stimulus for the verification of design. It gives maximum verification with least number
of test inputs and sometime very helpful to identify those errors which are not detected
easily by normal testing.

While VHDL is not so accurate for verification of design and have to verify with
regular testing inputs.

39

Neraj Kumar

System Verilog Code for Simple Reading and Writing the output File:

include "pack.sv"

module Imageprocessor(input logic clock,byte number, opcode,byte
userinput,bit control,output logic complete);

int r,w; //Image Reading
int i,j,file,filel;
bit ready,done,iscomplete;
always_comb
begin
al:assert($isunknown(control==0))

else $error("Grant not asserted");
end

pixel ImageA[330][500],ImageB[330][500],ImageC[330][500];

initial begin
filel = $fopen("toucan.raw", "rb");

$info("Working on Image %d",number);
ready = 0;

r =$fread(ImageA,filel);
$fclose(filel);

end
initial begin
filel = $fopen("toucan.raw"”, "rb");

r =$fread(ImageB,filel);
$fclose(filel);

ready=1;
end

40

Neraj Kumar

always_comb
begin
if(ready==1)
begin
if (control==0)
begin
for(i= 0; i <330; i++) begin //
operation
for (j = 0; j <500; j++) begin

ImageC[i][]] =
operate(userinput,opcode,ImageA[i][j],ImageB[i][j1);

end
end
a2:assert(ImageC[i][j].R <=255)
else $error("Maximum red");

a3:assert(ImageC[i][j].G <=255)
else $error("Maximum Green™);

a4:assert(ImageC[i][j].R <=255)
else $error("Maximum Blue");

end
else
begin
for(i= 0; 1 <330; i++) begin //operation

for (j = 0; j <500; j++) begin
ImageC[1]1[]j] = ImageA[i][3j];

end
end

for(i= 62; i<215; i++) begin //operation
for (j = 185; j <300; j++) begin

ImageC[i-62][j] = ImageB[i][j];
end
end
end

done=1;

if(done==1)

41

begin
$write(" doone = %b ",done);
file= $fopen("neeraj.raw","wb");

for(i = @0; i < 330; i++) begin
for (j = 0; j <500; j++) begin

$fwrite(file,"%s",ImageC[i][j].R);
$fwrite(file,"%s",ImageC[i][j].G);
$fwrite(file,"%s",ImageC[i][j].B);
end
end
$fclose(file);
end

end
complete=(done*ready);

a5:assert(complete==1)
else $error("Maximum Blue");

end
endmodule

Neraj Kumar

42

Neraj Kumar

Future Improvements

1. Our Current SIMD Processor is able to Process a tile of pixels only one time but if we can
improve it process a tile second time as well before writing the output file then we can
develop many more applications. Like Image Flipping like horizontal flipping, vertical
flipping, 90,180,270 degree clockwise or counterclockwise rotation, jumbling of tiles etc.

Horizontally Flipped Image

2. Data bus between pixel buffers to Processor is 900*24 bits, this could create a problem.
So, we will try to reduce the data load on this bus while maintaining the parallelism and
speed.

43

Eric Liskay

. Major changes to the code and design would be needed to make the design
synthesizable. Images would have to be loaded into the memory on the board
somehow since right now, VHDL commands are just reading the image file from
the computer’s drive.

a. One approach to emulating the design would be using Mentor Graphics’
Veloce. With Veloce, the non-synthesizable portions such as the testbench
and file I/0 would be located in the HVL(Hardware Verification Language)
space. The image processor controller and the cell entities would be
located in the HDL(Hardware Description Language) space.

In order to reduce memory usage during simulation and process larger images,
only parts of the image could be loaded into the pixel buffer at a time. This would
increase file 1/0 and probably processing time, but would decrease memory
usage.

. A parameterized kernel size could be added without many changes to the code
to enable larger kernels.

. Other convolution instructions could be added such as noise reduction. With

larger kernels, convolution procedures such as a 9x9 average filter could be
added.

. For the operations “Darken Highlights” and “Brighten Shadows”, a gradient
threshold could be added to prevent the abrupt transition between processed and
un-processed pixels.

44

Eric Liskay

Results

Please see the presentation slides for examples of the output images for each opcode.

45

References
All Photographs © Eric Liskay
Lecture 10. Edge detection. Sobel and similar filters. Convolution

http://web.cecs.pdx.edu/~mperkows/CLASS_VHDL_99/2012/2012-lecture010_edge-

detection-SobelG.ppt

Wikipedia - Sobel Operator
http://en.wikipedia.org/wiki/Sobel operator

A VHDL Function for finding SQUARE ROOT
http://vhdlguru.blogspot.com/2010/03/vhdl-function-for-finding-square-root.html

Tools
+ Adobe Photoshop CS6
+ Mentor Graphics Questa© Advanced Simulator 6.3g

- Altera Quartus Il Web Edition v12.0

46

http://web.cecs.pdx.edu/~mperkows/CLASS_VHDL_99/2012/2012-lecture010_edge-detection-SobelG.ppt
http://web.cecs.pdx.edu/~mperkows/CLASS_VHDL_99/2012/2012-lecture010_edge-detection-SobelG.ppt
http://web.cecs.pdx.edu/~mperkows/CLASS_VHDL_99/2012/2012-lecture010_edge-detection-SobelG.ppt
http://web.cecs.pdx.edu/~mperkows/CLASS_VHDL_99/2012/2012-lecture010_edge-detection-SobelG.ppt
http://en.wikipedia.org/wiki/Sobel_operator
http://en.wikipedia.org/wiki/Sobel_operator
http://vhdlguru.blogspot.com/2010/03/vhdl-function-for-finding-square-root.html
http://vhdlguru.blogspot.com/2010/03/vhdl-function-for-finding-square-root.html

